Electricity Generation – Fuel of Choice?

Tamara Walden
Vice President, Strategic Business Relations
Energy Marketing & Trading

May 14, 2002

Outline

Prior to 2001

- Forecasted growth & opportunities
 - Demand
 - New projects
 - Natural gas
 - Power

2001

- Recent events
 - Annual demand
- Result Storage overhang
 - Price collapse
- Economy & Tragedy
 - Sept. 11th
 - Enron situation
 - Capital spending cuts

Going Forward

The Inevitable

U.S. Power Generation Fuel Mix

Shifting Portfolio Mix

- Past
 - Pipes themselves
 - Balancing
 - OBAs
 - Storage

- Future
 - Pipes
 - Storage
 - **◆** LNG
 - Fuel switching
 - Demand-side management
 - New technology
 - Hourly gas markets

Natural Gas Basin Flows & Projected Demand Growth 2002-2006

North American Gas Forecast

- 2000 North American natural gas demand was approx. 23.3 TCF
- Estimated 2010 demand will rise to 30 TCF (approx. 3% increase per year)
- Drivers:
 - Environmental regulation
 - Natural gas-fired power plant construction
- Alternative Fuels

U.S. Pipeline Additions 56+ Bcf/d Announced

Planning

- 43 projects
- 27.2 Bcf/d
- 11 Bcf/d 3 AK projects
- In-service 12/01 to 12/08

Filed

- 32 projects
- 7.5 Bcf/d
- In-service Jan 2001 to Nov 2004

Open Season

- 26 projects
- 10.6 Bcf/d
- In-service April 2002 to June 2005

FERC Approved/ Certificated

- 42 projects
- 11.4 Bcf/d
- In-service July 2001 to Nov 2004

U.S. Gas-Fired Generation Growth

Capital Expenditure Cuts

Company

Capex Cut

Williams

\$ 1 billion (25%)

Calpine

\$ 2 billion

Duke

-0-

Dynegy

\$.75 billion*

El Paso

\$ 1.5 billion

Mirant

\$ 1.5 billion

Reliant

-0-

Enron

everything (value unknown)

TOTAL

\$ 6.75 billion

Williams

Economic Indicators

- Capital constraints causing market impact on:
 - Storage
 - Pipeline projects
 - Gas-fired generation
 - R & D projects

Delaying the Inevitable

- Capital constraints
- Decreased deliverability of U.S. supply
- Constrained infrastructure
- Impact on pricing

Volatility

Will lead to resurgence of alternative fuels

Electricity Generation – Fuel of Choice?

Profile of Coal Plant Least Likely to be Affected by Gas

- Minemouth or Low Delivered Costs
- Low mining costs
- SCR controlled
- Low heat rate
- Gas is the marginal unit most of the time
- High gas transport costs
- Limited gas storage in vicinity
- Area is gas pipeline constrained

Profile of Plant Most Likely to be Affected by Gas

- High transport costs
- High heat rate
- Abundant gas storage in vicinity
- Low gas transport cost
- Limited or no NOX controls in a region where Nox is regulated

Gas Will Compete Indirectly

- More gas units will:
 - ◆Reduce power price spikes
 - Reduce power prices overall
- Results
 - Demand growth will be constrained
 - Asset values of generators may decline
 - Generators will pay less for commodity
 - Off-Peak and shoulder months will be most vulnerable

Competition Will Hasten Wider Industry Changes

- Volatility is here to stay
- Risk management will become more complex
- Transactions will become:
 - More structured
 - Multi-commodity
- In Old World, transactions were viewed as Zero Sum Game
- In New World, choice will be between Win-Win and Lose-Lose relationships

Government Driving Technology

- Solar
- Fuel Cells
- Wind Power
- Geothermal
- Biofuels
- Other Alternatives
 - Coal emissions trading
 - ◆Improved efficiencies

Distributed Energy Resources Technologies

DER Technologies	Commercially Available	Emerging Technology
Microturbines		
Combustion Turbines		
Reciprocating Engines		
Stirling Engines		
Fuel Cells		
Energy Storage / UPS Systems		
Photovoltaic Systems		
Wind Systems		
Hybrid Systems		

Costs of DER Equipment

Capital Costs of Selected DER Equipment		
	Capital Cost (\$/kW)	
Microturbine	700 - 1100	
Combustion Turbine	300 - 1000	
ICEngine	300 - 800	
Stirling Engine	2,000 - 50,000	
Fuel Cell	3,500 - 10,000	
Photovoltaic	4,500 - 6,000	
Wind Turbine	800 - 3,500	

Fuel Cells

Conclusions

